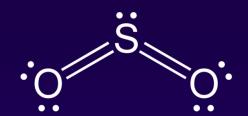
Evidence on the Developmental and Reproductive Toxicity of Sulfur Dioxide


July 12, 2011

Developmental and Reproductive Toxicant Identification Committee (DART) Meeting

Reproductive and Cancer Hazard Assessment Branch Office of Environmental Health Hazard Assessment California Environmental Protection Agency

Sulfur Dioxide (SO₂)

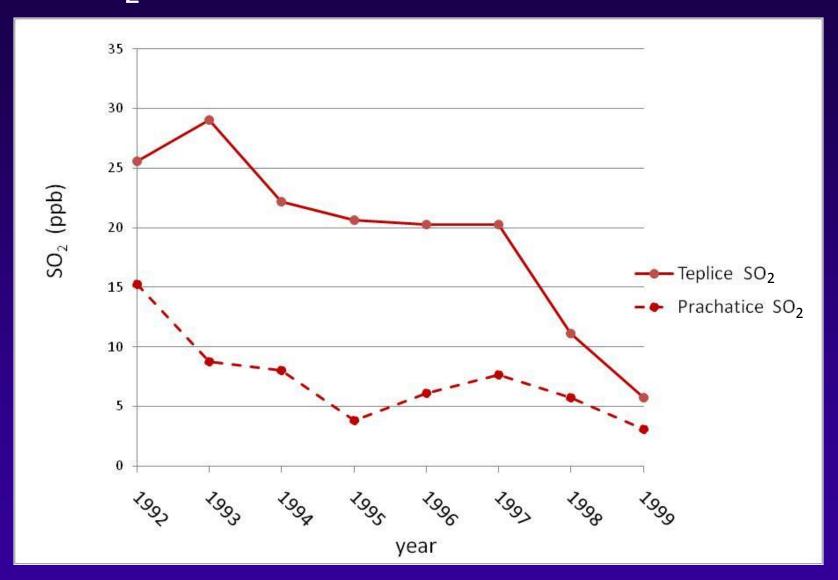
- Colorless, nonflammable gas, pungent odor
- In air pollution in combination with sulfuric acid, sulfur trioxide, ozone, nitrogen dioxide, and particulates
- In ambient air from
 - fossil fuel consumption at power generation and other industrial facilities
 - wildfires

Sulfur Dioxide (SO₂)

- Criteria air pollutant
- US EPA SO₂ standards
 - New standard
 - 1-hour period: 0.075 parts per million (75 ppb)
- Primary route of exposure
 - Inhalation of gaseous SO₂
 - Smaller percentage absorbed at low (~40% at 0.001 ppb) vs high air concentrations (>90% at 0.100 ppb)

Male Reproductive Toxicity

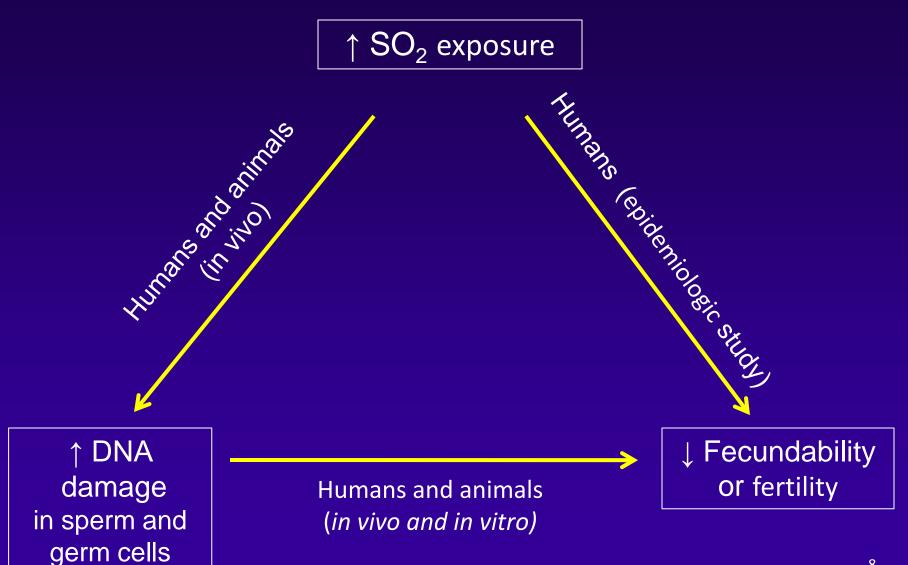
Human Studies



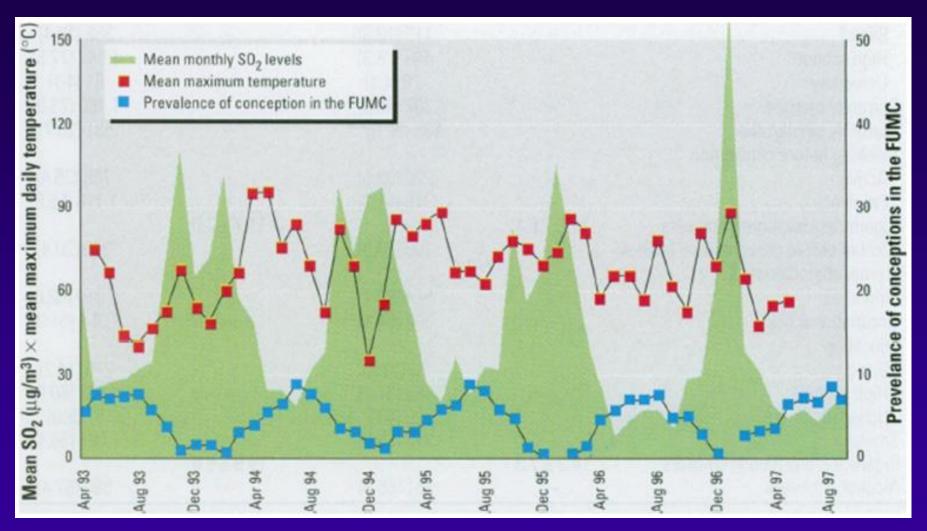
Teplice Program (1991-1999)

- Czech government / U.S. EPA
- Very high levels of air pollution

SO₂ Levels in Teplice and Prachatice

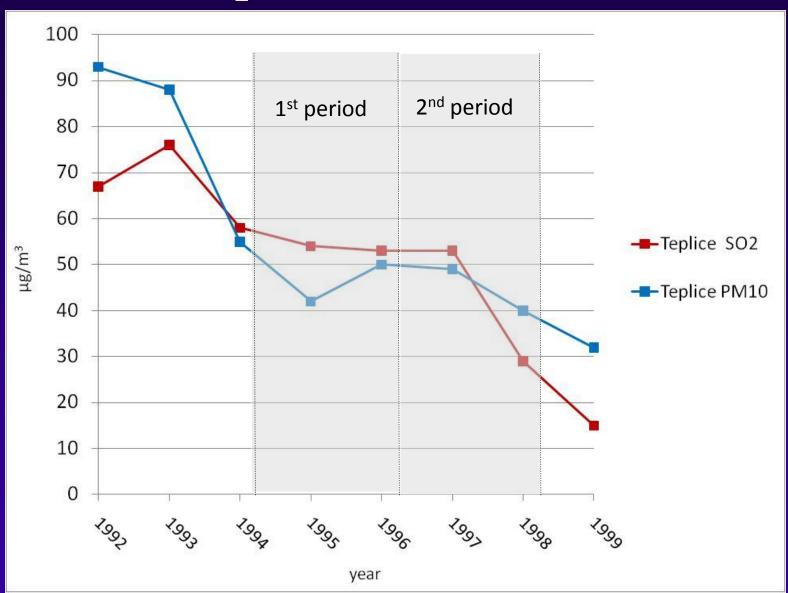

Male Reproductive Toxicity Studies in Humans

Retrospective cohort study


- fecundability

- Studies on sperm
 - quality
 - genetic integrity
 - DNA abnormal chromatin structure
 - aneuploidy

Male Reproductive Toxicity



SO₂ levels, Temperature, and Conception

30-day running averages of SO_2 levels (in micrograms per cubic meter) and 30-day maximal daily temperatures (°C) compared to percent conception in the FUMC by the second month before conception

SO₂ Levels in Teplice

Adjusted odds ratios (AOR) for conceiving in the first unprotected menstrual cycle by exposure to SO₂ prior to conception

	Medium			High		
	15.3 – 30.5 ppb			> 30.5 ppb		
	AOR	CI	p-value	AOR	CI	p-value
1 st 2-yr period						
4 mos	1.58	0.85–2.74	0.16	1.26	0.58-2.71	0.56
3 mos	0.88	0.49-1.57	0.66	0.86	0.41-1.82	0.70
2 mos	0.49	0.25-0.96	0.037	0.43	0.20-0.93	0.033
1 mos	1.14	0.67-1.97	0.62	1.20	0.58-2.48	0.62
2 nd 2-yr period						
4 mos	0.90	0.51-1.61	0.74	0.88	0.41-1.85	0.73
3 mos	0.85	0.45-1.57	0.59	0.96	0.45-2.03	0.91
2 mos	0.67	0.36–1.28	0.22	0.59	0.36-1.28	0.20
1 mos	1.16	0.59-2.29	0.66	1.15	0.59-3.59	0.31
				Adapted ¹	from Dejmek et al	.,2000 ₁₁

Influence of distance from the monitor on the adjusted odds ratios of conceiving in the second month (30-60 days) before conception

		Medium			High	
Distance	AOR	CI	p- value	AOR	CI	p- value
< 3.5km	0.56	0.31–1.00	0.05	0.36	0.17–0.73	0.005
> 3.5km	0.58	0.31–1.08	0.09	0.70	0.34-1.45	0.34

Evidence of a Causal Association

- Reduced odds of conception with SO₂ exposure
 >15.3 ppb in 2nd month before conception
- Timing of the effect coincides with critical period
- Dose-response association with SO₂ exposure
- Stronger association when considering distance
- Decreased fecundability only seen with SO₂
- Effects on sperm motility and morphology appeared reversible

Human Studies on Sperm

- Air pollution adverse effects on sperm quality and sperm chromatin
- SO₂ increased DNA damage in sperm
- SO₂ increased risk of aneuploidy in sperm

Animal Studies Male Reproductive Toxicity

Mice exposed to SO₂ by inhalation showed toxic effects in the testis, as well as other organs:

- Altered testis basement membranes, damaged Sertoli cells and spermatids (> ~11,000 ppb)
- Altered testicular biochemical parameters (> ~8,400 ppb), increased DNA damage
- † levels of lipid peroxidation, altered intracellular redox status in mouse organs, including testes (at ~20,000 ppb)

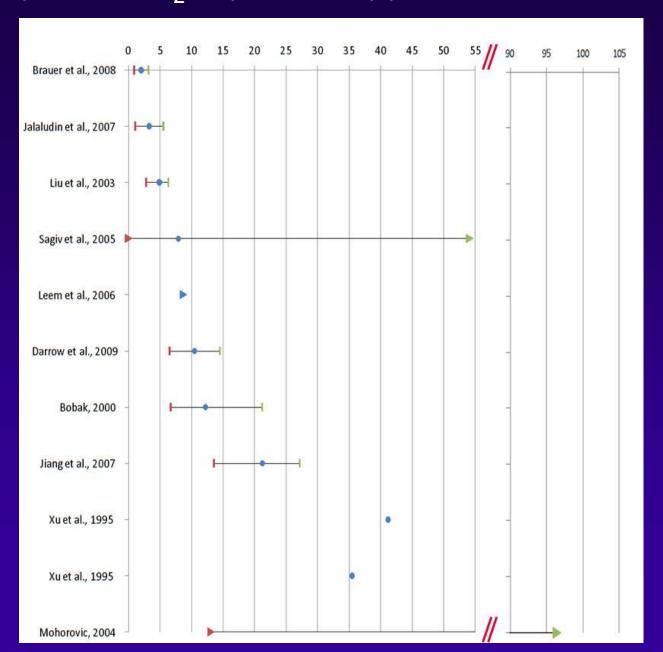
Summary

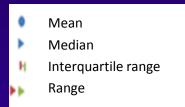
Male Reproductive Toxicity

- Decreased fecundability
- Decreased sperm quality
- Toxic effects to the testes
- Increased DNA damage in sperm

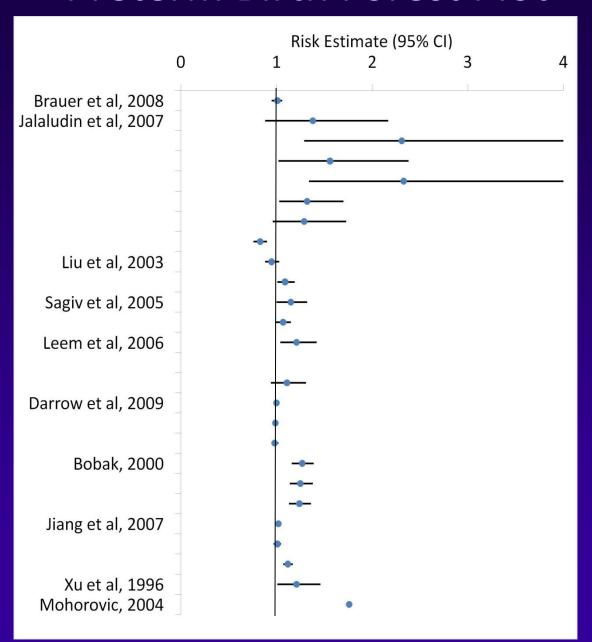
Questions?

Developmental Toxicity


Developmental Toxicity

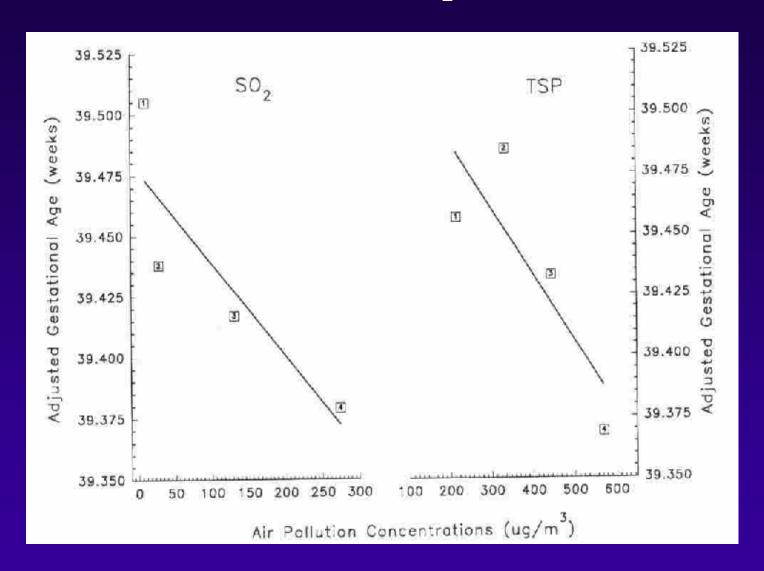

- Preterm birth
- Low birth weight
- Congenital malformations
- Pregnancy loss
- Asthma
- Other developmental effects

Preterm Birth


- Ten studies eight report significant findings
- Higher SO₂ exposure increased risk of preterm birth
- Three studies reported dose-response associations
- Studies varied
 - window of exposure
 - adjustment for distance from monitor
 - level of exposure

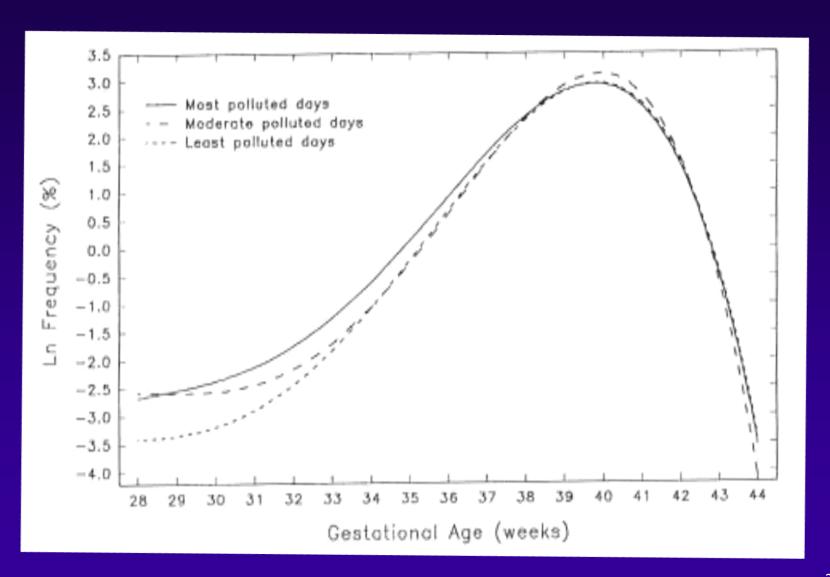
Reported SO₂ Exposures (ppb) in Preterm Birth Studies

Preterm Birth Forest Plot



Risk estimates with 95% confidence intervals from 10 studies

Study by Xu et al.


- High levels of SO₂
- A large gradient of SO₂
- Monitored and adjusted for seasonal changes
- Controlled for total suspended particles (TSP)
- Close proximity of population to air monitoring stations
- Investigated different number of lag days (exposure windows)

Adjusted Gestational Age, by SO₂ and TSP Concentrations

Derived from locally weighted regressions, adjusting for temperature, humidity, day of the week, season, maternal age, gender of child, and residential area

Gestational Age Distribution by Tertile of SO₂ Concentration

Results from the Study by Xu et al.

- Dose-dependent relationship between gestational age and SO₂ and TSP
- Adjusted odds ratio for PTB = 1.21 (95% CI= 1.01, 1.46 for each log_e (ug/m³) increase in SO₂
- Pregnancies at high risk for PTB may be particularly susceptible to effects of air pollution

Outcomes examined in humans

- Low birthweight (<2500 g)
- Birthweight (continuous)
- Intrauterine growth restricted (IUGR), Small for gestational age (SGA; <10th percentile for sex and gestational age)
- Very low birth weight (<1500 g)
- Fetal ultrasound scan measurements, e.g., femur length, head circumference

22 epidemiologic studies

# of Studies	Association with fetal growth
13	↑ risk only
2	↓ risk only
2	Both ↑ and ↓ risk
5	No significant associations
22	(Total)

Spatial and Temporal Exposure Assessment

Study	Association with fetal growth restriction, comments
Lin et al., 2004	个 risk LBW at medium and high levels
Dugandzic et al., 2006	↑ risk LBW, 1 st trimester
Williams et al., 2007	Very high 个 risk LBW; outlier
Yang et al., 2003	Slight ↓ in birth weight, 1st trimester
Hansen, et al., 2008	↓ ultrasound measurements, low SO ₂
Brauer et al., 2008	No significant associations, low SO ₂

Co-pollutant confounding

- Carbon monoxide (CO)
- Particulate matter:
 - $< 10 \ \mu m \ (PM_{10})$
 - $< 2.5 \mu m (PM_{2.5})$
 - Total suspended particulates (TSP)
- Nitrogen dioxide (NO₂)

22 epidemiologic studies

# of Studies	Association with fetal growth
13	个 risk only
2	↓ risk only
2	Both ↑ and ↓ risk
5	No significant associations
22	(Total)

Fetal Growth Multi-pollutant analyses

Study	Co-pollutants
Gouveia et al., 2004	CO, PM ₁₀ , (NO ₂ , O ₃)
Bobak and Leon, 1999	TSP, NO _x
Hansen et al., 2008	PM ₁₀ , NO ₂ , O ₃
Lin et al., 2004	CO, PM ₁₀ , NO ₂ , O ₃
Liu et al., 2003	CO, NO ₂ , O ₃
Williams et al., 2007	PM _{2.5} , lead
Nascimento and Moreira, 2009	PM ₁₀ , O ₃

Lin et al., 2004 - Taipei and Kaohsiung, Taiwan

- Assessed spatial and temporal variation
- Restricted cohort: 3 km from monitors
- Adjusted for CO, PM₁₀, NO₂, O₃
- Adjusted for season
- High SO₂ levels
- Exposure gradient

Lin et al., 2004

Results for LBW and SO₂ (entire pregnancy)

Exposure	SO ₂ conc. (ppb)	AOR* (95% C.I.)
Low	< 7.1	1.00
Medium	7.1 – 11.4	1.16 (1.02, 1.33)
High	>11.4	1.26 (1.04, 1.53)

^{*} Adjusted for gestational week, gender, birth order, season, maternal age & education, and co-pollutants (CO,. PM₁₀, NO₂, O₃)

Lin et al., 2004

Results for LBW and SO₂ (third trimester)

Exposure	SO ₂ conc. (ppb)	AOR* (95% C.I.)
Low	< 6.8	1.00
Medium	6.8 – 12.4	1.13 (0.99, 1.28)
High	>12.4	1.20 (1.01, 1.41)

^{*} Adjusted for gestational week, gender, birth order, season, maternal age & education, and co-pollutants (CO,. PM₁₀, NO₂, O₃)

Fetal Growth

Lin et al., 2004

Limitations

- Kaohsiung and Taipei
- Maternal characteristics
- CO was associated with ↓ risk of LBW
- Correlations among pollutants not reported

Fetal Growth

Animal studies

- ↓ birthweight in mice at 65,000 ppb; concentration-dependent
- ↓ fetal weight, no change in crown-rump length in mice at 25,000 ppb
- No effect on fetal weight in rabbits at 70,000 ppb

Congenital Malformations

Congenital Malformations

Epidemiologic Studies

Methodological challenges

- Confounding
- Multiple comparisons
- Case identification
- Case groupings, syndromes

Congenital Malformations Epidemiologic Studies

Case groupings

- Any/all birth defects
- Chromosomal vs. non-chromosomal defects
- Heart defects
- Oral clefts

Inconsistent findings

Congenital Malformations

Animal study

 No association with specific or aggregate malformations in mice at 25,000 ppb or rabbits at 70,000 ppb SO₂

Spontaneous abortion

No association in a cross-sectional occupational study

Stillbirth

- Fetal death after 28 weeks gestation, or >1,000 g
- Ecologic studies
- Correlation with SO₂ (r=0.7; p≤0.05)

Animal studies

Gestational exposure to SO₂ did not result in changes in mean litter size or resorption frequencies at:

- 25,000 ppb (mice)
- 70,000 ppb (rabbits)

Exposure to 32,000 ppb or 65,000 ppb SO₂ was not associated with changes in litter size

Asthma

Prenatal exposure to SO₂ associated with \uparrow risk of childhood asthma...

- High correlations between pre- and postnatal exposure
- High correlations among co-pollutants
- Traffic-related pollutants had stronger associations

Other Developmental Outcomes

Mice

- Effects on male-male social behavior at 12,000 & 30,000 ppb
- Delays in acquisition of certain postnatal reflexes at 32,000 ppb

Developmental Toxicity

Summary

- Preterm birth
- Low birth weight
- Congenital malformations
- Pregnancy loss
- Asthma
- Other developmental effects

Questions?

In vitro fertilization (IVF)

- SO_2 was consistently but not significantly associated with \downarrow odds of live birth
- Other pollutants more strongly associated with odds of live birth

Animal Study

Rats exposed by inhalation to SO₂ at ~1,500 ppb showed effects on:

- Estrous cycle length in F₀ and F₁ offspring
- Pregnancy frequency and duration
- Offspring growth (body weight)
- No changes observed at ~57 ppb

Related studies: Sodium sulfite

- In vitro exposure of sheep or cow oocytes resulted in fragmentation of chromosomes, with or without rearrangement
- No effects were seen in mouse oocytes exposed either in vitro or in vivo

Female Reproductive Toxicity Summary

• Humans: IVF

Animals: Estrous cycles and pregnancy

Related studies

Questions?